当前位置: 燃汽轮机 >> 燃汽轮机优势 >> 核电行业研究双碳目标驱动,核能未来可
(报告出品方/作者:东北证券,廖浩祥)
1.核能原理及发展概况1.1.核电原理概述1.1.1.核裂变链式反应核反应有四种方式:核裂变、核聚变、粒子轰击和核衰变,其中核裂变链式反应为核能发电原理。质量较大的原子(如铀、钍、钚)的原子核在吸收一个中子后会分裂为多个质量较小原子核、同时放出二至三个中子和巨大能量,而新产生的中子引起新的原子核裂变,裂变反应连续不断地进行下去,同时不断产生新能量,这个过程就是核链式核裂变反应。核裂变链式反应即为核能发电的能量来源。1.1.2.核电站组成核能发电的本质是核能——热能——机械能——电能的能量转换。为了实现这一转换,核电站由核岛和常规岛两部分组成。核岛部分包括反应堆装置和一回路系统,主要作用为进行核裂变反应和产生蒸汽。水作为冷却剂在反应堆中吸收核裂变产生的热能,成为高温高压的水,然后沿管道进入蒸汽发生器的U型管内,将热量传给U型管外侧的汽轮机工质(水),使其变为饱和蒸汽。被冷却后的冷却剂再由主泵打回到反应堆内重新加热,如此循环往复,形成一个封闭的吸热和放热的循环过程,这个循环回路称为一回路系统。常规岛部分包括汽轮发电机系统和二回路系统,主要作用为利用蒸汽推动汽轮机组发电。汽轮机工质(水)在蒸汽发生器中被加热成蒸汽后进入汽轮机膨胀作功,将蒸汽焓降放出的热能转变为汽轮机转子旋转的机械能。汽轮机转子与发电机转子两轴刚性相连,因此汽轮机直接带动发电机发电,把机械能转换为电能。作完功后的蒸汽(乏汽)被排入冷凝器,由循环冷却水(如海水)进行冷却,凝结成水,然后由凝结水泵送入加热器预加热,再由给水泵将其输入蒸汽发生器,从而完成了汽轮机工质的封闭循环,此回路称为二回路。1.1.3.核反应堆分类核反应堆的结构形式多样,根据中子能量分布形式、冷却剂种类等因素可分成各种不同类型的核反应堆。若按中子能谱分类,可分为热中子堆和快中子堆。快中子堆中,裂变是由快中子(平均能量达0.1MeV左右)引起的,因此堆内不能存有中子慢化剂材料。若按冷却剂分类,可分为气冷堆、液体冷却堆和液态金属冷却堆。气冷反应堆包括二氧化碳冷却和氦气冷却反应堆;液体冷却反应堆主要包括轻水冷却的压水堆和沸水堆,以及重水冷却的重水反应堆;液态金属冷却的反应堆主要有钠、钠-钾合金等冷却的反应堆。1.2.世界核电发展历史自上世纪50年代以来,核电经历了半个多世纪的历程。按照时间顺序,大体上可以分为实验示范、高速推广、滞缓发展、逐渐复苏、谨慎发展五个阶段。1.2.1.实验示范阶段该阶段以前苏联在年建成奥布宁斯克实验性核电机组为开端,随后美国、英国法国、加拿大等西方国家相继建成不同类型的核电机组。这一阶段的核电机组多为早期原型机,使用天然铀燃料和石墨慢化剂,证明了核能发电的技术可行性。不过核电机组在设计上比较粗糙,结构松散,机组发电容量不大,一般在30万千瓦之内,且在设计中没有系统、规范、科学的安全标准作为指导和准则,因而存在许多安全隐患,发电成本也较高。1.2.2.高速推广阶段上世纪六十年代,由于西方国家对能源和电力供应的需求急剧上升,核能发电作为一种经济、安全的清洁能源受到许多国家的大力追捧。随着美国大规模向西欧和亚洲出口轻水堆设备和技术,法国、日本等国的核电工业体系得以建立。到年底,全世界核电机组的总装机容量达到GWe。年到年核电装机容量的年增长率达到26%。这一阶段采用的是较为成熟的商业化反应堆,使用浓缩铀燃料,以水作为冷却剂和慢化剂,单机组的功率水平在第一代核电技术基础上大幅提高,达到百万千瓦级。目前全世界在运核电机组大多数使用第二代技术或其改进型。1.2.3.滞缓发展阶段上世纪八十年代以后,西方主要国家经济发展进入平稳期,全社会电力需求大幅度下降,同时受年美国三里岛核事故和年前苏联切尔诺贝利事故影响,核电建设进入滞缓发展阶段。为了振兴核电市场,美国和欧洲的核电供应商与相关机构一起先后推出了“先进轻水堆用户要求文件”(URD)和“欧洲用户对轻水堆核电站的要求”(EUR),提出了加强预防与缓解严重事故措施、改善人因工程等一系列新要求,第三代核技术的概念正式形成。1.2.4.逐渐复苏阶段进入21世纪,人们对温室气体排放等环境危机越来越