燃汽轮机

访谈清华大学建筑学院教授石兆玉谈燃料发

发布时间:2022/7/14 14:55:40   
医院订阅哦!石兆玉教授清华大学建筑学院建筑技术科学系年7月毕业于清华大学土建系供热、空调工程专业。毕业后留校先后在建工系、热能系、建筑学院任教。现为国家建设部供热专家组成员,国家建设部供热测试中心技术顾问,中国城市供热协会技术委员会委员、中国电子学会电路与系统分会图论与系统优化专业委员会委员,北京市工程技术系列(水、气、热工程)技术顾问。化石燃料必须梯级利用煤和天然气,理论燃烧温度在摄氏度左右。用于供热,通常最高供水温度在摄氏度左右,如果把煤、天然气拿来直接燃烧供热,其温差将在摄氏度左右,能源品位的损失,接近70%~80%。因此,把煤、天然气直接燃烧供热,是对能源的最大浪费,是最不经济的。可是至今,这种状况到处可见,不仅小型燃煤供热遍地开花,就是新近“煤改气”的大型燃气供热(锅炉房总容量在几百吨以上)依然如故。这种状况不改变,我国供热技术的落后面貌难以改观。煤和天然气,最合理的利用方式,是梯级利用,即电热冷联供或AGCC即整体煤气化联合循环发电。如前所述,煤和天然气,理论燃烧温度都在摄氏度左右,最理想的利用方式是高温段发电,低温段供热、制冷。对于通常的发电厂,发电效率一般在30%~40%左右,汽轮机后的乏汽压力为0.兆帕,饱和温度为36摄氏度,其能源品位值只有总能源品位值的2.5%~5.0%之间,即发电潜力很低,但按数量分析,约占总热量的50%左右,目前大多数情况,向大气中排放。如果用于供热、制冷,实现电、热、冷联供,全系统的热能利用系数可提高到70%~80%,因此,这种电、热、冷的梯级利用是化石燃料的最佳利用方式。根据国家发改委的有关文件,我国正在大力推广大型机组(容量在兆瓦~兆瓦以上)的电热冷联供系统,这对于我国大中城市来说,是非常正确的。在加速城镇化的建设中,我国势必会有大量小城镇涌现,人口在几万至十几万之间,对于这样的城镇,比较合理的供热方式应该是小型背压机组(容量在25兆瓦以下)的电、热、冷联供。经民间业内人员测算,这种机组,即使冬天联运,夏天停运,经济上都是合算的。如果这种供热方式,能够取得共识,那么我国相当数量人口的供热民生问题,就会得到解决。对于局部区域(如一定范围的公共建筑或居民区),可以大力发展分布式能源系统。这种系统,利用小型燃气发电机组(内燃机或小型燃气轮机),一面发电,一面利用废气或冷却热量通过热泵机组供热供冷,解决本区域的电、热、冷需求。以上不同方式的电、热、冷联供,既可以实现能源的梯级利用,又能够覆盖全社会的供热需求。这种能源的梯级利用,应该作为国家的基本国策,用法律形式固定下来。在发电厂中,能源品位值的最大损失是在电站锅炉,通常发电主蒸汽温度为摄氏度左右,在锅炉内,换热温差有摄氏度,能源品位的损失近50%,因此,提高发电厂的发电效率的主要技术措施是提高发电主蒸汽的温度,但超高临界、超超临界的发电机组其最高主蒸汽温度也只有摄氏度多度,发电效率也不能超过40%~45%,受限的主要因素是汽轮机材质的耐温程度。发电效率的进一步提高,要有待于金属材料工艺的更大革新。进一步提高电热冷联供的发电方式还有燃气——蒸汽联合循环。通常以天然气为燃料。压缩空气与天然气在燃烧室燃烧形成的高温烟气(约1摄氏度~摄氏度),进入涡轮机膨胀作功发电。在燃汽轮机中排出的尾气进入余热锅炉,产生的蒸汽在汽轮机中进一步发电。如果燃料采用煤,则先经过增压气化装置产生煤的裂化气,再做适当处理,如同天然气一样,进入燃气轮机燃烧发电。这种以煤为燃料的燃气——蒸汽联合循环称为AGCC。无论以天然气为燃料,还是以煤为燃料,其燃气--蒸汽联合循环的高温烟气可达摄氏度以上,因此,发电效率都能在40%~45%左右。对于我国,无论积极推广燃气的燃气——蒸汽联合循环还是大力研发燃煤的燃气--蒸汽联合循环,都有很大的现实意义。大力研发煤、天然气的清洁燃烧煤在燃烧过程中,要排放大量的烟尘和颗粒物。煤主要成分是碳,燃烧过程要生成2.1倍重量的二氧化碳。煤一般含有0.1%~2.0%的硫,燃烧过程要生成二氧化硫气体排放至大气,所有上述烟气生成物,都是产生雾霾的重要因素。因此,燃煤将严重污染大气。天然气由于是气体,容易与空气混合,通常燃烧效率比较高。天然气主要成分是甲烷,碳的含量远比煤少,因此二氧化硫的生成量,只是燃煤的一半。因此,通常把天然气称作清洁燃料。但必须了解,天然气的燃烧温度常常在0摄氏度以上,此时会产生大量的氮氧化物,这种气体的排放,同样是形成雾霾的重要因素,因此,无论燃气还是燃煤,实现清洁燃烧都是非常重要的研发课题。上世纪初至50年代,英国伦敦、美国洛杉矶都相继发生了严重的雾霾天气。两个城市都为此发生过数百人的死亡事故。但是,经过几十年的大气治污,又重新换回了蓝天白云。他们治理雾霾的基本经验:一是高污染的产业搬家(移向发展中国家);二是实行煤改气。近年来,随着我国经济的高速发展,也同样出现了严重的雾霾天气。摆在我国面前的是如何正确借鉴国外的可行经验?高污染企业向国外搬家,显然不现实。目前我国主要采取的是“煤改气”。但这几年的实践证明,我国在煤改气的政策中,实际上存在两个误区:一是缺乏数量上的整体规划。我国是个多煤少气的国家,不可能全国的供热都搞煤改气。就算从国外进口天然气,一年以亿平方米计算,也只能满足40个北京市(一年亿立方米用气量)的用气量。全国中小城镇加起来,个北京市都打不住。如果在全国范围内,盲目推广煤改气,一但发生“气荒”,就会犯下灾难性的错误。二是没有重视天然气的清洁燃烧。有些决策者,以为只要煤改气,大气治污的问题就会迎刃而解,因此在执行中,放松了对燃气的排放标准的严格控制(前些年,我国的排放标准始终≥毫克3立方米)。结果,一个奇怪的现象,在北京出现了:8年,北京首钢尚未完全搬家,北京热电厂仍然全部烧煤,但大气仍然达到了二级标准,顺利完成了奥运会的举办。但几年以后的今天,首钢完成了彻底搬迁,北京几乎所有的供热热源全部实现了“煤改气”,却出现了史无前例的严重雾霾。这种沉痛的教训,再次告诉我们,即使烧天然气,也必须立足于清洁燃烧。在国外,利用降氮燃烧技术,是使煤改气政策获得成功的关键技术,我国在推广煤改气的过程中,必须认真学习国外的先进经验。研究表明,天然气在预燃阶段以及火焰的前、中段燃烧温度一般在摄氏度以下,氮氧化物生成量很少,只是在火焰的尾端,燃烧温度在0摄氏度以上,此时燃烧温度愈高,氮氧化物的生成量呈指数形式直线上升。因此降低火焰尾部的燃烧温度是降氮技术的关键。目前比较成熟的技术是分段燃烧或烟气回抽。分段燃烧,是在火焰的前、中、尾端分别送入空气过量系数为0.7、0.9和1.2,通过控制空气量达到降低燃烧温度进而减少氮氧化物生成量的目的。烟气回抽是将降温后的部分烟气抽送入火焰尾部,其目的仍然是降低燃气燃烧温度,进而降低氮氧化物的生成量。为了提高降氮效果,常将两种技术措施联合使用。天然气燃烧时,会有大量的水蒸汽产生(天然气中的氢与氧化合生成)。一种新的建议,利用尾部蒸汽冷凝水,回抽送入火焰尾部,同样可以达到降氮的目的。由于水的汽化潜热比较大,降低燃烧温度的效果会更显著。有的单位在工程上采用了上述技术,氮氧化物的排放量达到了44毫克3立方米,可见,有很好的发展前景。我国是产煤大国,20年~30年内,要改变以煤为主的能源结构,是比较困难的。在供热行业,希望%的实现煤改气也是难以想象的。因此,我国环境的改善在加大天然气清洁燃烧的同时,还必须下决心进行煤的清洁燃烧技术的研发。过去我们对于煤的清洁燃烧,重点放在烟尘和二氧化硫的排放的限制上。现在看来是不够的,烧煤也必须控制氮氧化物的排放(即脱硝)。对于脱硝技术,目前主要是在炉内喷入氨和尿素,通过催化或非催化还原反应,使氮氧化物还原为氮和水。对于煤的脱硫,目前已有多种方法,但还不尽如人意,必须继续加大研发力度。炉内脱硫,多用于循环流化床锅炉。实践表明:在实验研究阶段效果较好,但在实际工程应用中,效果并不理想。主要原因是,在燃烧现场,煤粉与石灰粉难以混合均匀,进而影响了脱硫效果。在供热行业,已经研制成功了煤粉锅炉,燃烧效率可达92%,很有发展前途。如果在制粉工艺过程,加入石灰粉,就可在制粉的同时完成脱硫任务。由于在制粉过程中,煤粉与石灰粉能得到充分混合,其脱硫效率一定会明显提高。目前,通行的脱硫方法是湿式脱硫法,为了提高脱硫效果,常常加大石灰水的循环量和喷淋强度,其结果是在烟气的排放中增加了硫酸钙的粉尘含量,使脱硫设备变成了新的雾霾发生器。所有这些问题,促使我们在煤、天然气的清洁燃烧研发中,必须在技术上要有新思路、新创新。当前人们比较

转载请注明:http://www.aideyishus.com/lkyy/809.html
------分隔线----------------------------

热点文章

  • 没有热点文章

推荐文章

  • 没有推荐文章